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liquid rubidium: II. Single-particle correlation functions 

G Kahl 
lnstitut fiir Theoretische Physik, Technische Universitat Wien. Wiedner HauptstmOe 8-10, A- 
1040 Wien. Austria 

Received 18 February 1994, in final form 30 June 1994 

Abstract We present results for the dynamic single-panicle correlation functions (i,e,, the 
intermediate self-scattering function and the velocity autocamlation function) of six liquid 
states of rubidium obtained in the same computer experiment ns described in the preceding 
paper. Since the incoherent structure factor for Rb cannot be determined in a neutron-scattering 
experiment, our computer results could not be compared lo experimental data. Temperature 
effects have been studied for both correlation functions: (i) an increasing temperature causes 
the single-particle correlations to decay much more rapidly than at low temperatures; (ii) the 
velocity autocorrelation function becomes a much more slowly decaying function in time. This 
reflects the cage (drift) effect encountered in dense (expanded) systems. An attempt to inierpret 
the peak height and half-width of the selfdynamic structure factor in terms of mode-coupling 
theories has failed either these subtle effects are encountered io a y-range inaccessible to 
computer experiment. or they require a more sophisticated malysis in terms of ah11 mode- 
coupling-theory approach. The diffusion constant extracted from the single-particle correlation 
functions shows good agreement with data obtained from the collective correlation functions, 
which marks a good internal consistency of the computer experiment. 

1. Introduction 

In the preceding paper [ I ]  we discussed results for the dynamic collective correlation 
functions (CFs) of several states of liquid rubidium and a direct comparison between 
theoretical and experimental results; the present contribution is devoted to the dynamic 
single-particle CFs obtained in the same computer experiment. Due to the fact that the 
incoherent scattering length of Rb is smaller than the coherent scattering length by a factor 
of ten the determination of experimental data for the single-particle CFS of Rb is impossible: 
hence these dynamic CFS are available only in a computer experiment. However, we would 
like to mention that for several alkali metals the incoherent dynamic structure factor Ss(q, w )  
can be measured (Na [2, 3, 41, Li [5 ,  6, 71). The single-particle CFS considered here are the 
self-intermediate scattering function F,(q, f )  (or its Fourier transform (R’) S&. w ) )  and the 
velocity autocorrelation function (VACF) I l l ( t ) .  

On the theoretical side considerable effort has been made during the past years to 
construct models for the interpretation of single-particle CFS in terms of sophisticated 
theories. Besides the well known hydrodynamic (HF) and memory-function (MF) models 
[X, 91 (which turn out to describe the single-particle CFs far better than the collective CFs), 
several successful attemps have been made for first-principles models (e.g., [lo, 1 1 ,  12, 13, 
14, 151). These theories start from the basic equations of statistical mechanics and finally 
arrive at expressions from which we learn that the MF of a dynamic CF is built up in a rather 
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complex way from all the other dynamic CFS, involving both single-particle and collective 
CFS (hence the name mode-coupling-MC-theories). Therefore, the determination of such 
an MF of a single-particle CF requires--e.g., in the formulation of Sjogren and Sjolander 
[ I l ,  121-the solution of a complex set of integral equations. In terms of these models i t  

has become possible to explain several effects of single-particle CFS which were observed 
i n  particular in expanded systems: one example is the extremely slow decay of the VACF 
i n  time ( q ( r )  - rr3I2) observed both for continuous [I61 and hard-core potentials [17]. 
A closer analysis has revealed that this effect may be explained by the fact that a tagged 
particle builds up a vortex pattern of particles. A further example for an effect explained by 
MC theory is the deviation of the half-width of &(g, w )  from a purely diffusive behaviour 
for small g-values [IO, 11, 12, 13, 14, 151. Several of these effects have been assessed for 
neutron-scattering results 12, 181. 

The aim of this paper is the presentation and discussion of results obtained in our 
computer experiment for the two single-particle CFS rq(9, t) and q( t ) .  The study should 
primarily be considered as a completion to the preceding paper [I]. The data are interpreted 
in terms of HF and MF models. We do not interpret our data in terms of a fu l l  MC theory, 
as. e.g.. by solving the complete set of MC equations as proposed by Sjogren [ I I ,  121; 
here we rather use results or predictions of MC theories to interpret our results, such as 
the behaviour of the half-width of S&. w )  for small 9-values or the long-time decay of 
the VACF in expanded systems. In particular, attention has been paid to temperature effects 
observed in the single-particle CFS caused by the variation of density and temperature along 
the coexistence curve of Rb. Using several models of the single-particle CFs we have 
extracted again the diffusion constant D and have compared it both to the experimental 
values [I91 and to values obtained from the collective CFS in the preceding paper; this 
should also give us an idea of the internal consistency of the simulation. 

Summarizing our results we have to admit that a simple analysis of our results in terms 
of expressions predicted by MC theory fails: neither the results predicted for the half-width 
and the (U = 0) value of the self-dynamic structure factor, nor the r3'* decay of the VACF 
can be assessed with a sufficiently high reliability. Hence a more detailed analysis of the 
computer results in terms of a complete solution of the MC equations will be required. For 
the diffusion constant we obtained results of comparable accuracy as in the study on the 
collective properties, while the kinetic shear viscosity could not be extracted in a reliable 
way. 

the following section contains only a few 
complementing remarks, i n  particular details of the single-particle CFs; characteristic 
parameters of the Rb states considered, of the simulation and of the pair interactions for this 
computer experiment have already been discussed i n  detail in section 2 of the preceding 
paper [I]. We present approximate cross-relations between the two single-particle CFS and 
several results predicted by MC theory which were used here for the interpretation of the 
computer data; we leave, however, a more complete presentation to the original papers. 
In the subsequent section we discuss our results for the single-particle CFs; one subsection 
therein is devoted to the diffusion constant and the kinetic shear viscosity. The paper is 
concluded with a summary. 

The paper is organized as follows: 

2. The model, the simulation and the correlation functions 

The single-particle CFS were obtained in the same molecular-dynamics (MD) computer 
experiment which we described in detail in the preceding paper [I]. Six Rb states (denoted 
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by I-VI) have been considered; the system parameters and a discussion of the interatomic 
forces may also be found in section 2 of [ I ] .  The sets of q-vectors used in the study on 
the collective CFs have been extended by a firther set of 16 q-vectors for each Rb state, all 
of them compatible with the periodic boundary conditions. These additional q-values were 
chosen to be rather in the small-q region: this choice should provide a better possibility 
of studying special effects predicted by MC theory in particular for the small-q range. The 
complete sets of q-vectors considered in this contribution are depicted for all Rb states in 
figure 1 of [ I ] .  

The single-particle CFs we have studied are the self-intermediate scattering function 
F,(q, t) and the normalized VACF * ( t ) .  The moments o,“(q), of and the Einstein frequency 
S2: are defined in the usual way; the explicit expressions for these quantities in terms of 
the interatomic forces and static particle distribution functions up to fourth (w:) and second 
(w:) order are compiled in [20]. 

The time averaging has been performed in the same way as for the collective CFS by 
shifting origins (using the explicit expression of (7) of [ZO]): the CFs have been recorded 
every second time-step At  over 2500 Ar-values (for Al-values cf. table 1 in [11). However, 
the difference in the time origins has now been chosen to be 2500 AI, so that the events over 
which we average do not overlap. The resulting reduction in averaging events does not cause 
any loss in accuracy: an additional averaging over the number of particles compensates for 
it. 

The dynamic single-particle CFs have again been studied in terms of HF and MF-n models 
(n representing the number of parameters involved); we use the same notation as in I201 
and refer the reader for further details to this paper or standard text books 18, 91. The only 
elastic property which may be extracted from the HF and MF models for the single-particle 
CFs is the diffusion constant D: it appears as a parameter in the HF model for F,(q, I) and 
may also be recovered from the long-wavelength limit of the relaxation time r,(q) of a 
second-order MF-I ansaiz for F,(q, t ) .  From YCr). the diffusion constant may be obtained 
from the time integral of the VACF and finally the relaxation time s, of an MF model for 
* ( I )  is also related to D.  In addition MC theory gives us in principle the possibility of 
determining the kinetic shear viscosity U. 

An approximate relation between the two single-panicle CFs may be obtained as follows: 
we can write &(q. t )  in the so-called cumulant expansion 

F ~ ( ~ .  t) = e-u*nl(r)+u‘m(r)-~.. (1) 

in terms of the functions pi ( t ) ,  which may be related to the spatial moments [8]. Neglecting 
all terms beyond @](I) (Le., in the Gaussian approximation). one may derive the cross- 
relation 

U: = (BM)-’ being the thermal speed. For the half-width w:’2(q) and the (0 = 0) value 
of the self-dynamic structure factor &(q, U )  the following behaviour has been predicted by 
MC theory for small q-values [21]: 

(3) 

The coefficients ai and bj are temperature dependent. For high temperatures we find a 
purely linear behaviour (‘drift effect’) for both quantities, as predicted in [13, 14, IS]: the 

1 
x D q 2  

S,(q,O)= - [ l + a ~ q + a z q ~ l  w ~ ” ( q ) = D q Z [ 1  -blq+bzq21. 
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Figurr 1. Self.intermedim scattering functions F,(q, 1 )  as functions of q and f for the following 
Rb states: (a) I (350 K) and (b) VI (1873 K). The y-vectors are those (from top-smaller y- 
values to bottom-largest q-values) depicted in figure I of [I]. Curves for y-vectors near to 0.5 
A- '  (1.0 A-')  are marked by a full (broken) arrow. 
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coefficients then contain D and U as parameters. For low temperatures (where the ‘cage 
effect’ is predominant) a purely quadratic deviation from the linear behaviour is found by 
Wahnstrohm and Sjogren [22]. For intermediate temperatures a crossover from a linear 
to a purely quadratic behaviour is predicted 1211. nDq2S,(q. 0) and w:/’(q)/Dq* will be 
denoted by [Ss(q, O)IN and [us ( q ) ] ~  respectively. I /z 

3. Results 

3.1. The self-intermediate scattering function and the self-dynamic structure factor 

Figure 1 shows the self-intermediate scattering function Fs(q,  t )  for two selected 
temperatures (350 K and 1873 K). We observe that F, (q , t )  decreases faster in time as 
we increase the temperature: e.g.. for q - 0.5 A-’ (q - 1.0 ,&-I) a factor of -45 (-25) 
between 350 and 1873 K is observed. 

I 2 711-9 0 1 Z rih-tl 

Figure 2. Generalized diffusion conslant D ( y )  and generalized dimensionless diffusion canstant 
D‘(q)  = D(q)qzAr (AI = 3 fs) as functions of q for Rb states I-VI obtained in an HP fil lo 
Fdq.0 .  

The self-intermediate scattering functions have been fitted by means of an HF model 
(using a generalized diffusion constant D(q)  as a parameter) and an MF-1 model 
(parametrized by a relaxation time q(q)) ;  for details cf. [ZO]. D(q)  is depicted as a function 
of q in figure 2. D may be recovered from r&) via lim,,o ~ , ( q )  = u,’/DC$,. Results for 
D obtained from the limits ( q  + 0 )  of s&) and D(q)  are compiled in table 1. We obtain 
similar data for the diffusion constant as in the case of the preceding paper: up to state IV 
results are quite consistent (this also holds for the comparison with experiment [19]); for 
states V and VI larger differences are observed. 

In contrast to the collective CFS, the half-width of the single-particle CF F&, t)  shows 
no distinct structure near qp: this is already clear from D*(q) = D(q)qz, which we 
obtained from the HF model for F,(q, t) and which is depicted in figure 2; in this model 
s;’*(q) = InZ/D*(q) represents the half-width at half-maximum. D*(q) is monotonically 
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Table 1. Diffusion constant D in IO-’ mz S K I  as obtained via different methods from the 
computer expenmcnt for Rb States I-VI: (a) HF fit to Fs(q, l ) .  (b) M F - I  fit to F&(q, l ) .  The Im 
column presents he values of the respective experimental values (p 845 in [19]: concerning 
their determination md their large error-ban cf. discussion in subsection 3.3 of the preceding 
paper [ I l l .  

D (m? s-’) x 

System Theory (a) Theory (b) Experiment 

I 0.325 f 0.007 0,339 f 0.007 0.352 i 0.014 
I1 0.391 f 0.003 0.406 i 0.001 0.418 f 0.020 
Ill 3.320 f 0,006 3,180 f 0,006 3.661 * 1.8 
IV 5.540 f 0.003 5.100 i 0.003 6.047 f 4.4 
V 6.950 f 0.004 7.560 f 0.001 9.346 * 8.4 
V I  7.955 f 0,005 10.80 f 0.001 14.18 j, 14.7 

increasing and does not show any particularities near qp. This also holds (and the agreement 
is remarkably good) for the half-width of F,(q, t )  obtained from the MF-1 model. We may 
conclude that the broadening of the collective CFs near qp is an entirely collective effect. 

We have compared the relaxation time ?$(q) determined numerically in the MF-1 model 
with the prediction of the Lovesey model [23] 

The coefficient y is obtained in the low-q limit and is given by D,D/u;.  We know by 
now that the determination of D is a rather delicate task and hence small deviations in this 
quantity might influence the value of y ,  and consequently r)(q),  In order to guarantee a 
proper comparison between r,(q) and r:(q) we proceeded as follows: y in (4) has been 
adjusted to obtain agreement between 7:(q) and r,(q) for the smallest q-vector. In fact the 
resulting D-values ( D  = v ; y / Q , )  do not differ too much from those reported in [l]: they 
agree very well with the results of an HF fit to F ( q .  f) (cf. table 5 of [l]). Our y-values 
range from OS7 (state I) to 1.992 (state VI) and differ quite strongly from the ideal-gas 
limit (i.e., y - 2/& - 1.13). The results for zs (q)  and ?b(q) are depicted in figure 3: 
we see immediately that for the single-particle CFS not only quantitative but also substantial 
qualitative differences are observed: we remind the reader that in the case of the collective 
CFs a nice agreement was found. Again, the results for the relaxation times for states I and 
I1 are clearly separated, while the curves for states 111-VI are rather close, despite the large 
temperature range they cover. 

Turning towards the self-structure factor S,(q, w )  we have depicted in figures 4 and 
5 the normalized (w = 0) value of S,(q,w) and the normalized half-width w:12(q) as 
functions of q. These data have been calculated from our MF-I and HF fit parameters. 
The D-value required in the normalization procedure as defined above is the average 
over the extrapolations of w;I2(q) and S,(q ,  0) towards zero. In this way we obtain two 
different results for D ,  one from the HF, the other from the MF-I route. These D-values 
are compiled in table 2. It is worthwhile to mention that the error-bars are rather small. 
which indicates a good internal consistency of the different results obtained via the S,(q, o) 
and the w:’2(q) routes. On the other hand data calculated from the HF and the MF-I model 
show discrepancies up to 1673 K, which can be considered as acceptable, while data differ 
substantially for 1873 I€ We have then fitted the results for S, (q ,O)  and w:12(q) to the 
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Table 2. Diffusion constant D in m2 s-’ as obtained from an expression predicted by MC 
theory for S,(y. 0) and w:‘’(q) (cf. text and equation (3)): the represented values we obtained 
from (a) HF and (b) MF-I pnramerrization of F,(y,t). Every value represents an average over 
the data obtained vi3 equation (3). 

D (m2 s-’I x IO-’ 

System (a) KF (b )  MF-I 

I 0.327 & 0.00002 0.319 f 0.0003 
II 0.404 i 0.00002 0.397 f 0.0003 
111 3 346 i 0.0024 3.485 4 0.024 
IV 5.715 i 0.029 5,992 5 0.11 
V 8.698 i 0.20 8.243 zk 0.14 
V I  12.662 f 0.74 9.308 2c 0.10 

D 

0 0  
0.2 I t 

0 I l I l I I / / I I l I I / I I I I l I l l l l [  

0 I 4 s iA-‘l 
Figure 3. Relaxation time r,(q) of an MF-I parametrization of the self-intermediae scattering 
functioii & (4. t )  and the corresponding Lovesey value rk(y) L231 as functions of q for Rb states 
I-VI. Symbols are as in figure 8(b) of [I]. 

general quadratic expressions (3); the normalized data [S,(q, O)]N and [o:”(q)]N (D in 
the normalizing factgr see above) are displayed in figures 4 and 5 as symbols, while the 
analytic expressions are shown as full and broken lines. Up to -1 A-’ the results for the 
HF and the MF-I branches are within good numerical agreement (note the different vertical 
scale for states I, I1 and 111 to VI). Discrepancies for larger q-values mark the limit of 
validity of the hydrodynamic model. Since we observe for the absolute values a very good 
agreement, the quantitative differences for the [ S , ( q ,  O)IN-curves for states V and VI may 
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5 
t 0 

0 

A 0  

O A  
A 

8 

1673 I< 

13i3 I< 

1073 I< 

I t  A 

0 I 4 'I lfi-'l 
Figure 4. Normalized (o = 0) value I$(y. ")IN of the self-dynamic structure factor S s ( y , u )  
(cf. text) as a function of y for Rb states I-VI ar obtained from 3n HF ( I )  and an MF-I (A) fit to 
F,(q.  I). The ewes indicate quadratic functions obtained in a leasl-squares fit to the data (full 
line: HF. broken line: MF-I model). 

be explained by different D-values in the above normalization prescription (cf. table 2). 
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1G73 I< A A  A A  
0 0  0 0  

O L  
0 0 0  373 I< 

0 A 

A A  
0 

A 
0 

A . . 
350 K 0 

0.9 A 

O 0  A 

I I I I I I I I I !  1 1 1  I I I 1 1  I !  1 1  1 I I  

0 I 2 'I V-'l 
. 

Figure 5. Normalized half-width [miJ2(y)lN of the self-dynamic StNCNIe factor S,(q.o)  (Cf. 
text) as a funcuon of y for Rb states I-VI as obtained from itn KF (0 )  and an MF-I (A) fit to 
f$(q, I ) .  The curves indicate quadratic functions obtained in a least-squares fit to the d3t3 (full 
line: HE, broken line: MF-I model). 

Data for [ W : ~ ( ~ ) ] N  show qualiturive differences for the higher temperatures, a consequence 
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of an internal inconsistency. 
The simulation data have been adjusted to the general full quadratic expressions (3) 

with q-values ranging up to -1 A-' .  Using the parameters ai and b, obtained in  this fit we 
have then tried to interpret our data in terms of models proposed by MC theory. We have 
to admit that the accuracy of our data analysis is obviously not sufficiently high to allow 
the verification of the predicted behaviour: no clear temperature trends of the coefficients 
a, and bi, i = 1, 2 could be observed; their values depend furthermore in a sensitive way 
on the number of q-values included in the fit. One possible explanation for these problems 
might also be that these effects are only encountered in a q-range which is not accessible 
for a computer experiment of that sample size. It is, however, more probable that such 
a simple interpretation of the data is not sufficient: only a detailed analysis in terms of a 
complete MC approach (where these coefficients are expressed in terms of special functions 
introduced in the different MC formalisms [ l l ,  12, 13, 14, 15,211) can give a final and more 
conclusive decision if computer experiments are in fact accurate enough to describe these 
subtle effects predicted by MC theory. As a consequence we cannot consider results for the 
kinetic shear viscosity obtained in the high-temperature range as reliable and therefor we 
will not present them here. 

3.2. The velocity autocorrelation function 

Figure 6 shows the VACF @(r) for Rb states I-VI investigated in this study. For low 
temperatures we observe a behaviour which may be understood very well in terms of the 
so-called 'cage effect', i.e., a tagged particle is enc losed4ue  to the high density-in a cage 
formed by the other particles. Within this cage it can propagate only over short distances, 
it will be reflected (expressed by negative values of @ ( r ) )  and finally will quickly lose the 
memory of its initial velocity (i.e., the VACF will decay quickly in time). As we increase the 
temperature, the cages will become larger and finally will disappear and the particles can 
propagate over larger distances without any collisions, which is expressed in a slower decay 
of the VACF in time: indeed we find an extremely slow decay for 1873 K. This behaviour 
has been investigated more closely for two model systems, i.e., for hard spheres [I71 and 
for repulsive Lennard-Jones systems [I61 where it was found that in fact @(t) decays as 
tM3/*  for large f. The picture behind these results was revealed by Alder and Wainwright 
[ 171 by studying the velocity field around a tagged particle: the authors found that particles 
in front of and behind this particle tend to acquire velocities in the same direction as the 
tagged particle, so that particles in front are pushed and those behind are drawn. The result 
is a vortex pattern around the tagged particle and the velocities decay solely due to the 
influence of the shear viscosity. These findings were substantiated by hydrodynamic [24, 
2.51 and MC-theOV [15, 261 models. 

In order to visualize these predictions one has to plot [log@(r)] against [logr] and 
should then obtain in particular for intermediate and higher temperatures a straight line with 
a slope of -$. We present these results in figure I: only for the intermediate temperatures 
(states 111 and IV) can we claim that there is some similarity with such a straight line while 
for the highest temperatures a clear curvature is observed, which indicates that the VACF 
decays even more slowly than predicted. Looking for possible reasons we have compared 
U and liquid-metal potentials: Rb potentials are explicitly state dependent and they are in 
reduced units-in contrast to U systems-still of about the same depth as near the melting 
point. We have therefore performed additional simulations for states V and VI, where we 
have used instead of the full interaction only the repulsive part (those states are denoted 
by V' and VI'): we used a potential which has been truncated at the position of the first 
minimum (in the sense of Weeks, Chandler and Andersen [27]) and shifted so that the new 
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Figure 6. 
approximtion to F,(y. t): symbols) as functions o f f  far Rb sLltes I-VI. 

Normalized VACF *(I) (full lines) and Q G ( t )  (obtained from the Gaussian 

potential merges smoothly into the abscissa. Results are also presented in figure 7 by the 
broken line: although for these systems the curvature of * ( t )  is less pronounced than for 
the full potential we still observe a similar behaviour which excludes the strong attractive 
potential as the only possible explanation. Other possible reasons for the deviation from the 
predicted behaviour might be (i) the rather low' density (while the results for the repulsive 
U system were obtained at intermediare densities); ( i i )  the softer repulsion of liquid-metal 
potentials compared to LJ interactions. To settle this question unambiguously would require 
more complete calculations or-still better-an interpretation of our computer simulation 
data in terms of a complete MC-theory approach. We hope to answer this question in the 
near future. 
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1S73 I< 

IF73 I( 

1373 I< 

.I 0 In(t/Ai.) 

Figure 7. Log-log plot of the VACF (i.e., log[O(l)] against loglr]; AI = I ps): full line. Rb 
stares Ill-VI; broken h e .  the repulsive systems V' and VI' (as defined in the text). The broken 
stnight line indicates the results predicted by MC theory [ I S .  261, i.e.. log[*(t)l - 1-3f2 

Finally we have analysed our data in terms of the Gaussian approximation. In figure 6 
we show the VACF Y ( t )  calculated i n  the computer experiment along with YG(r) as obtained 
from our results of Fs(q .  f) via (2). While agreement between the approximate and exact 
function is convincing for the lowest temperatures (as it was also for Cs [20, 281). we 
find increasing discrepancies even for intermediate temperatures. This reveals that the 
contribution of the higher-order spatial moments in the cumulant expansion (2) become 
increasingly important as we expand the system. 
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3.3. Thermodynamic and  elastic properties 

Using the HF and the MF-1 models for the single-particle CFs we can only extract-as 
outlined in section 2-the diffusion constant D .  Results for this quantity obtained in different 
ways are compiled in tables 1-3, along with the experimental values 1191. Concerning the 
determination of these experimental data and the comparatively large error-bars for higher 
temperatures we refer the reader to a discussion in the preceding paper [ I ] .  

(i) Results obtained from both models for F,(q, I )  are up to intermediate temperatures 
in good agreement with D-data calculated from the mean square displacement (table 5 of 
[I]). For states V and VI rather substantial differences are observed. 

(ii) The same holds for the D-data obtained from the extrapolation towards zero of the 
half-width o:’’(q) and S,(q, 0): in addition, for states V and VI the internal consistency 
breaks down, i.e., results obtained from the two routes differ substantially (-25 %). 

(iii) Finally, D as determined from the time integral of the VACF and an MF fit to Q ( f )  
yields a good internal consistency and good agreement with the data from the mean square 
displacement. In particular good agreement of the MF value is the more astonishing, since 
it is well known that the MF model is not able to describe the VACF accurately [20]. 

present results for the kinetic shear viscosity v here. 
As a consequence of our problems with the MC approach described above we do not 

Table 3. Diffusion canstant D m m2 SKI as obtained via different methods from the 
computer experiment for Rb states I-VI: (a) time integral of the VACF (cf. (26) of [20]) and (b) 
MF-I f i t  to *(r) The last column presents the respective expenmenti values (p 845 in [19]; 
concerning their determination and the large error-bars cf. discussion in subsection 3.3 of the 
preceding papa  [ I ] ) .  

D (m2 s-’) x 

System Theory (a) Theory (b) Experiment 

I 0 298 0.425 0.352 f 0.014 
II 0.454 0.526 0.418 f 0.020 
Ill 3.429 3.014 3.661 f 1.8 
I V  5.675 5.048 6.047 i 4.4 
V 8.483 7.994 9.346 i 8.4 
VI 12.303 11.515 14.18 f 14.7 

4. Conelusion 

We have reported on results of the single-particle CFs of liquid Rb; the temperature ranges 
from near the melting point up into the critical region. Due to the fact that the incoherent 
structure factor cannot be measured for Rb direct comparison with experiment was not 
possible. For these CFS several interesting effects have been predicted by MC theory. 
From the present results we can learn that only some of these predictions can be verified 
from an interpretation of data from a computer experiment at a level as we have used it 
with a sufficiently high accuracy and reliability. Both the ‘cage effect’ (dominant at low 
temperatures) and the ‘drift effect’ (dominant at high temperatures) could be reproduced 
nicely in a qualitative way; however, the predicted I-~/ ’  decay of the velocity autocorrelation 
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function for high temperatures could not be verified. In our experiment this function decays 
even more slowly i n  time. In a similar way the predicted q-dependence of the half-width 
and the (w = 0) value of the self-dynamic structure factor S'(q, o) could not be verified 
from our data with a sufficiently high accuracy; several reasons for this failure have been 
considered: this might be due to the fact either that the accuracy of the computer experiment 
is simply not high enough or that these effects are only encountered for very small q-values 
which are inaccessible to our experiment. In any case an analysis of the data in  terms of a 
full MC approach has become absolutely necessary to settle these questions unambiguously: 
then the quantities which appear as parameters in these expressions can be written in terms 
of special functions of the MC formalism and should give numerically more reliable results. 
The diffusion constant, extracted via several routes from the models fitted to the computer 
data shows an agreement of about the same degree as encountered in the case of the 
collective correlation functions. Again the internal consistency is-xcept for the highest 
temperatures-quite satisfactory. Due to the problems mentioned above the results for the 
kinetic shear viscosity are unreliable. 
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